
SchedMate: Large Language Models are DL Scheduling Enhancers

Zerui Wang*†

Shanghai AI Laboratory
Qinghao Hu∗

NTU
Ana Klimovic
ETH Zurich

Xingcheng Zhang, Peng Sun
Shanghai AI Laboratory

Abstract

Existing deep learning cluster schedulers make their schedul-
ing decisions on partial job information, such as resource
utilization metrics obtained through profiling. Incorporating a
broader range of information dimensions could enable these
schedulers to make more optimal decisions. Recent advance-
ments in Large Language Models (LLMs) present a promis-
ing avenue for efficiently extracting valuable insights from
original code base and execution logs, potentially enhancing
scheduling efficacy. In this work, we propose SchedMate,
designed to enhance the performance of deep learning sched-
ulers by incorporating LLMs and several advanced techniques.
It employs an LLM-based agent to meticulously analyze user
files within the working directory, extracting comprehensive
metadata based on scheduling parameters. SchedMate uti-
lizes a version management module to store and track the his-
torical jobs’ metadata and their fine-grained changes, enabling
fast extraction of metadata for repeated jobs and lower token
consumption. We plan to integrate SchedMate into multiple
novel DL schedulers to further improve their performance.

1 Introduction
In Deep Learning (DL) clusters, schedulers play a pivotal
role in managing the execution of diverse and computation-
ally intensive jobs. Existing DL schedulers are tasked with
allocating resources efficiently, yet they encounter several
substantial challenges that compromise their effectiveness.
They typically make their scheduling decisions on partial job
information, such as resource utilization obtained via profil-
ing. Additionally, they are usually unaware of the semantics
of jobs, such as model architecture, the type of training task,
batch size, and hyperparameters. However, incorporating a
broader range of information dimensions could enable these
schedulers to make more optimal decisions. The original code
base and execution logs, for instance, inherently contain a
wealth of information. Traditional approaches, however, fall
short in effectively leveraging this rich data.

In light of these limitations, the recent advancements in
artificial intelligence, particularly the emergence of LLMs,
offer promising solutions. LLMs have revolutionized natural
language processing. By leveraging the capabilities of LLM-
based agents, it is possible to address the aforementioned
challenges head-on. The introduction of techniques such as
ReAct [6], and Retrieval-Augmented Generation (RAG) [3]
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Figure 1: Overview of SchedMate.

provides a robust framework for LLMs to process and gener-
ate the context-rich information required for smarter schedul-
ing decisions. This blend of AI advancements promises to
significantly mitigate the current limitations of DL cluster
schedulers, paving the way for more responsive, interactive,
and efficient scheduling solutions.

In this work, we propose a novel framework, SchedMate,
designed to enhance the efficiency of deep learning schedulers
through the integration of LLMs and several advanced tech-
niques. SchedMate employs an LLM-based agent to meticu-
lously analyze user files within the working directory, extract-
ing comprehensive metadata based on scheduling parameters.
This enables SchedMate to intelligently predict job durations
and resource needs, allowing for adaptive adjustments to the
scheduling policy.

2 SchedMate Design
The core principle of SchedMate is to leverage LLMs to
improve scheduling decisions by distilling metadata within
users’ repositories in a non-intrusive way. The job meta-
data here covers both scheduling and training-related meta-
data, such as the structure of the model, training hyper-
parameters, and dataset settings. The architecture and work-
flow of SchedMate are illustrated in Figure 1.

Upon submission, essential details of jobs are immediately
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Condensed Prompt
You are a helpful AI assistant. You have access with access to several
tools: TOOLS INSTRUCTION
ReAct Instruction. Answer questions using this process: Thought, Ac-
tion, Action Input, Observation (repeat N times), and Final Answer.
Task Requirements. Find the answer based on the repository’s path,
command, and launch configuration. Response in a structured format.
Question.: What is the training, model, and dataset metadata of the job?
training command: python -m train experiment=pile/gpt
repository path: /path/to/project
launch configuration: ngpu=8, ...,nnodes=1

Agent Output

model_config
model_name: GPT
task: NLP
d_model: 768
n_layer: 12
vcb_size: 50257

training_config
batch_size: 256
lr: 0.001
optimizer: adamw
iters: 80000
iter_type: step

dataset_config
train: pile
valid: pile-val
...

Figure 2: Sample prompts and output for the Log Agent, with
some information omitted.

processed by the Admission Analyzer. This includes the job
name, working directory, the shell script, among others. Ini-
tially, the Admission Analyzer performs a rapid comparison
against the user’s historical submissions. Then, it forwards the
basic details and any matched jobs to the Metadata Extractor.

Metadata Extractor is at the heart of our system, respon-
sible for extracting the metadata from several data sources,
including the source code of the job, the configuration file,
the runtime log, and monitoring data.

A core component of Metadata Extractor is the LLM-based
Job Agent prompted as a ReAct [6] style agent equipped with
two tools, file tree reader and file reader, used for reading
certain files within repositories of jobs. The Job Agent is fed
with the job’s running command and the repository’s path.
The agent can deftly navigate to files with required metadata
using these tools. We employ a Vote and Evaluate strategy to
mitigate the well-known hallucination issue of LLMs. Addi-
tionally, the Query Engine, adopting the RAG framework [3],
seamlessly integrates into this system, parsing runtime logs
to attain job training speed, progress, and failures.

Invoking the agent to perform a complete extraction for
each task can be time-consuming. Given that users often
submit similar jobs repeatedly [2, 5], we design a Version
Manager to track users’ development progress and cache
historical job metadata along with their locations in the job’s
repository, enabling quick metadata extraction by Metadata
Extractor for matching jobs and updates.

The Vector Store facilitates the embedding and retrieval
of several data sources from other modules. It functions as
a knowledge base, storing the runtime logs, temporal data,
and the embedded representations of historical job metadata.
These embeddings are generated by an embedding model.
When a new job is submitted, the extracted job metadata is

embedded. The Vector Store employs sophisticated indexing
mechanisms to support efficient similar job matching and
parsing of job logs from Query Engine.

Finally, Scheduling Advisor leverages machine learning
models to forecast job duration and resource utilization by an-
alyzing comprehensive metadata of current job and historical
metadata. This information is then used to guide the cluster
scheduler’s scheduling decisions.

3 Preliminary Result and Future Plan
LLM Extraction Effect. We implement Metadata Extrac-
tor and conduct preliminary evaluations to demonstrate its
efficiency and accuracy. The primary prompt and a sample
output of Log Agent are shown in Figure 2. We also compare
the performance of different LLMs, including GPT-4 Turbo,
Qwen1.5-7B, and InternLM2-7B. Results show that they can
generally follow the instructions and generate structured out-
put. Currently, GPT-4 Turbo is the most accurate model. We
will explore the effect of more LLMs (e.g., LLaMA) to com-
prehensively evaluate the impact of different LLMs.
Future Plan. We plan to integrate SchedMate into multiple
novel DL schedulers as a plugin to further improve their
scheduling performance. Specifically,
• Tiresias [1]: Making job queue duration-aware to reduce
redundant and useless preemption.
• Lucid [2]: Achieving non-intrusive job throughput moni-
toring and skip profiling via prior job information.
• Pollux [4]: Reusing job goodput information to skip the
configuration exploration stage.
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